Optofluidic needle probe integrating targeted delivery of fluid with optical coherence tomography imaging.

نویسندگان

  • Bryden C Quirk
  • Robert A McLaughlin
  • Alex M Pagnozzi
  • Brendan F Kennedy
  • Peter B Noble
  • David D Sampson
چکیده

We present an optofluidic optical coherence tomography (OCT) needle probe capable of modifying the local optical properties of tissue to improve needle-probe imaging performance. The side-viewing probe comprises an all-fiber-optic design encased in a hypodermic needle (outer diameter 720 μm) and integrates a coaxial fluid-filled channel, terminated by an outlet adjacent to the imaging window, allowing focal injection of fluid to a target tissue. This is the first fully integrated OCT needle probe design to incorporate fluid injection into the imaging mechanism. The utility of this probe is demonstrated in air-filled sheep lungs, where injection of small quantities of saline is shown, by local refractive index matching, to greatly improve image penetration through multiple layers of alveoli. 3D OCT images are correlated against histology, showing improvement in the capability to image lung structures such as bronchioles and blood vessels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Advanced Optical Coherence Tomography System for Radiation Dosimetry

Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laborator...

متن کامل

In situ imaging of lung alveoli with an optical coherence tomography needle probe.

In situ imaging of alveoli and the smaller airways with optical coherence tomography (OCT) has significant potential in the assessment of lung disease. We present a minimally invasive imaging technique utilizing an OCT needle probe. The side-facing needle probe comprises miniaturized focusing optics consisting of no-core and GRIN fiber encased within a 23-gauge needle. 3D-OCT volumetric data se...

متن کامل

Static and dynamic imaging of alveoli using optical coherence tomography needle probes.

Imaging of alveoli in situ has for the most part been infeasible due to the high resolution required to discern individual alveoli and limited access to alveoli beneath the lung surface. In this study, we present a novel technique to image alveoli using optical coherence tomography (OCT). We propose the use of OCT needle probes, where the distal imaging probe has been miniaturized and encased w...

متن کامل

A forward-imaging needle-type OCT probe for image guided stereotactic procedures

A forward-imaging needle-type optical coherence tomography (OCT) probe with Doppler OCT (DOCT) capability has the potential to solve critical challenges in interventional procedures. A case in point is stereotactic neurosurgery where probes are advanced into the brain based on predetermined coordinates. Laceration of blood vessels in front of the advancing probe is an unavoidable complication w...

متن کامل

Interstitial Doppler optical coherence tomography.

Doppler optical coherence tomography (OCT) can image tissue structure and blood flow at micrometer-scale resolution but has limited imaging depth. We report a novel, linear-scanning, needle-based Doppler OCT system using angle-polished gradient-index or ball-lensed fibers. A prototype system with a 19-guage (diameter of approximately 0.9 mm) echogenic needle is constructed and demonstrates in v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 39 10  شماره 

صفحات  -

تاریخ انتشار 2014